Application of Fluorometers to Measure Wild Algal Growth In Vivo

Raymond Delashmitt

Abstract

The goal of this project was to characterize the WetLabs FLNTUSB fluorometer and determine the possibility of using it as an instrument to measure wild algal growth on substrates in vivo. To do this several aspects were investigated, which include determining the angle sensitivity of the instruments, if the instruments were able to compared directly to each other, if the signals recorded demonstrated that the instruments were recording actual fluorescence of algae, and to correlate the signal recorded to harvest data during the same time period. The results of this investigation showed that the angle sensitivity depends on whether the angle from normal is within the beam plane created by the LED and absorption cones, or if it was perpendicular to the beam plane. In the investigation to determine if the fluorometers were observing actual fluorescence of chlorophyll in the algae, it was determined that the signal was from fluorescence due to a photo-inhibition effect and the variance being dependent on the size of the signal. Finally, there is evidence that the fluorescence observed during the deployments of this project can be compared to harvest data during the same time period and the relative changes in both of these data sets appear to match, especially during periods that the substrates the fluorometers were observing were cleaned and the signal dropped accordingly.

Fluorometer Background

Fluorometers have been widely used since the early 1970's in marine biology research applications and it has been proven they can accurately model the level of chlorophyll in the water. It has also been shown previously that by detecting the chlorophyll, the fluorometer can measure a sample's level of ambient algae in water.¹ This technique of measuring algae growth has become a popular and widely accepted process due to the fact that the measurement can be done accurately, in real-time, without needing to remove the algae from the environment, and with a handheld instrument. Previous solutions to measuring algae involved removing the algae from the water by taking water samples, then measuring the algae populations in a lab with counting chamber methods² or High Performance Liquid Chromatography³.

The fluorometer measures the level of chlorophyll by the amount that the object in the beam fluoresces. The meter sends out a LED light of wavelength 470 nm, and when it comes in contact with the *chlorophyll a* in the algae it is absorbed, exciting it to a higher quantum state that then emits a photon back out at a wavelength of 695 nm⁴. This process is shown in **figure 1**⁵ below, with the LED as the transmitter, and the algae represented as the *chlorophyll a* molecules.

Figure 1 Diagram showing absorption of the LED photon and reemission of a photon to the detector

¹(Aberle, September 2006)

²(H Utermoehl, 1958)

³(Schroeder, 1994)

⁴(Wetlabs, 23 Dec 2009)

⁵(SCCF Recon, 2010)

The data from the fluorometer is recorded as a digital count or an analog voltage. The digital counts range from 50 to 4130, and the analog ranges from .072 V to 4.98 V. This means that the fluorometers feature a dark count of 50, which is present in all data collected, and in all the graphs featured, will have this value subtracted to give only the signals received by the fluorometers.

Additionally, due to the nature of the fluorescence of the chlorophyll, an issue with the detection is that the photon emitted from the algae is emitted in a random direction. Thus, the meter is set up to do an average of a set number of samples to decrease the noise in the signal. In these samples a variance is expected, which should be related to the signal strength by a square root function. For all of the samples taken during the experiments, the average number of data values taken before generating a single point was 60, then in the analysis of the data for hourly and daily averages each of these single points were used.

Lab Experiments

For the controlled lab tests to measure the configuration of the fluorometers, the experiments were to measure the angle of the local maxima of the signal produced by the instruments when exposed to a point-like source of fluorescence and to measure the angles of dispersion of the LED source and the cone of detection. To measure the angles of dispersion of the LED, a reflective surface was used to allow tracing of the light cone, which resulted in the following measurements in **figure 2**. This recorded line was of the sharp edge the beam dispersed by the LED, with the intensity dropping off substantially outside of the 15 degrees recorded. This area of light shall be referred to as the maximum LED cone.

Angle Orthogonal To Beam Plane

Figure 2 Diagram of the LED and absorption cones

The colored portions of the diagram show the areas that are the maximum LED dispersion or detector absorption cones. The maximum light dispersion cone was measured, while the cone of maximum absorption was based off of orientation of the detector with the assumption of it behaving in reverse to the LED photon dispersion beam. The absorption cone was drawn based on the symmetry to the light cone and geometry of the detector offset from normal. These cones are not the only areas that signal is detected by the fluorometer due to the Gaussian decay of the signal. This decay of the signal allows the tails of the two cones to intersect in front of the face of the instrument, which accounts for signal recorded by the fluorometer in the angle study experiment. In the diagram, it shows how when the angle is not in the plane where the beams cross, the theoretical dispersion is the same, and should result in the least amount of distortion of the signal. When the angle is measured in the beam plane, the geometry shows the cones of the LED and detector with an offset of 15 degrees towards each other, and each of the cones having a 15 degrees spread. This dispersion results in a theoretical range between .5 cm and 1.8 cm

where the signal is maximum, which is shown in later experiments to result in an oversaturated signal.

The next experiments were to determine the sensitivity of the fluorometers to a change in angle when the distance was held constant. The first experiment was to use a point-like source of 1 cm radius as the source of the fluorescence and to go through the entire range of angles possible to the fluorometers. The experiment had the change of angle both orthogonal to and within the plane that the LED and detector cone beams intersect. In this setup, the data was taken at intervals of 10 degrees while the radial distance of the face of the fluorometer to the substrate was held constant. The range of angles represented express the range of freedom that the biowiper and the size of the fluorometers allow, generally 70 degrees from normal in either direction.

The data for when the angle was perpendicular to the plane resulted with the absolute maximum at 90 degrees to the substrate with the signal decaying as the angle deviated from this value. On the closer distances the physical offset of the LED and detector, in the design of the instrument to account for the biowiper, affected my ability to keep the same distance on either side from normal. This resulted in the curve being biased towards the angles where the open biowiper is farthest away from the substrate due to its relative closer proximity to the substrate. The data from this experiment is featured in **figure 3** below with the dark counts accounted for in the signal.

The next aspect was when the angle was in the beam plane where the data showed signs from the previous analysis of the local maxima of the signal, but with the maximum directly in front of the LED beam being much larger than the other maxima present in the signal. The secondary maximum that was observed in some of the signals was towards the theoretical beam that is directly in front of the detector, and is greatest when the distances to the substrate are smallest. The maximum of the signal shifted as the distances away from the substrate changed. This shows evidence of an interaction between the LED and detectors cones that pulling of the maxima towards normal is occurring, due to the decay tails limiting the amount of photons available to be detected along the previously stated angles. At the smallest distance of 3 cm away, the maximum was at 20 degrees from normal towards the LED beam side. At the larger distances of 5, 7, and 8 cm away, the maximum was between 40 and 50 degrees from normal, towards the LED beam side. The other signals are between the 20 - 50 degrees from normal towards the LED beam side. This data of this experiment is featured in below in **figure 4** and features the complete dataset with 6 points taken for each angle to show the spread of data for certain angles and a subtraction of the dark counts.

Figure 3 Angle study with angle perpendicular to beam plane and viewing point source

Angle In Beam Plane, Viewing Point Source

Figure 4 Angle study with angle within beam plane and viewing point source

The second aspect of the angle analysis that was done was to repeat the previous test of the signals vs. angles, but have the fluorometers observing a substrate that would appear to be an infinite plane of fluorescence. The substrate used was previously shown to be similar to algae fluorescence at similar distances when tested with the fluorometers normal to the substrate. The signal curves of the fluorometers were higher than the point tests, and were smoother and more level than the point tests. This leveling can be explained by the averaging effect of allowing the instrument to view fluorescent points closer and further away than the point source experiment.

For the test with the angle perpendicular to the beam plane, the signal showed a decreased decay of the signal at large angles from normal to the substrate, and in comparison the difference was between 10 and 40 percent of the average for the distance. The curves shown in **figure 5** that appeared were more level than the point source, and mostly just showed the

decreasing trend from the physical offset on the instrument. This seems to suggest that when the fluorometer is set up with the angle perpendicular to the beam plane, the signal is fairly constant with respect to the angle from the substrate, so long as the angle is at or within 45 degrees from normal.

Additionally, when the angle is taken within the beam plane, the curve once again is smoother, but retains the maxima seen in the point test. The absolute maximum of the graph seems to be offset more towards 45 degrees from normal, towards the LED beam side. Throughout the distances, the absolute maximum ranges from 30 degrees to 50 degrees for distances of 4 cm and 8 cm respectively. This suggests that if the fluorometer is set up with this orientation the ideal angle will be around 45 degrees when the substrate is between 4 to 8 cm directly out from the face of the instrument. This set of data is shown below in **figure 6** with an account for the dark counts in the signal.

Angle Perpendicular to Beam Plane, Viewing Entire Substrate

Figure 5 Angle study with angle perpendicular to beam plane and viewing infinite plane

Figure 6 Angle study with angle within beam plane and viewing infinite plane

The results seem to show that for the constrictions of setup on the York River Flume, having the 45 degrees from normal will be possible when the angle is both in the beam plane and perpendicular to it. The difference is that when the angle is in the beam plane, and the angle is towards the LED beam side, the fluorometer will be detecting chlorophyll readings from a more concentrated area of the substrate. When the angle is perpendicular to the beam plane, then it should result in an averaging effect of the substrate, with the area of view being larger than the other setup. Additionally, the data suggests that with the angle perpendicular to the beam plane, if another angle is desired it should be able to perform at a nearly equal level, while when the angle is within the beam plane the peak performance is limited to between 30 and 50 degrees from normal towards the LED side.

York River Experiments

Raymond Delashmitt

2010 - 2011

The first experiment that was done on the York River platform concerning the fluorometer data was to test whether the fluorometer signals would be comparable when they were observing the same substrate. To test this, the fluorometers were deployed from November 4-8 as shown in **figure 7**, with them at 45 degrees to the substrate with the angles perpendicular to the beam plane, so that the signal readings would be affected least by the angle of deployment. Additionally, due to space constrictions on the platform, the fluorometers were deployed observing opposite sides of the same substrate since there was no indication of an algae growth difference between the different sides.

Figure 7 Diagram showing physical setup of fluorometers for comparison and extended deployments

The following data was recorded by both of the fluorometers, and are represented by the averages of each hour with error bars of a single standard deviation. The fluorometers feature a dark count of 50 counts, and in the follows graphs that values is subtracted away to give only the values that are recorded by the fluorometers. This data is too short of a deployment to determine cyclic behavior of the algae, but it does show that despite best efforts being made to deploy the fluorometers in the same orientation and distance from the substrate, the sensitivity of the instruments is too great. The difference between the curves can most likely be attributed to the sensitivity to distance that follows a decaying exponential curve. This shows that the fluorometers can't be mounted so that they give absolute readings on the signal detected from the algae, especially to the level of comparing between two different fluorometers. Although the fluorometers are still useful in this setup to determine the relative change of the signal detected over a deployment. The following graphs show the signal recorded during this deployment, and show the daily average in **figure 8**, the variance per hour in **figure 9**, and factional variance in **figure 10**, with each of these graphs using data without the dark counts of the instruments.

Fluorometer Comparisons

Figure 8 Comparison of recorded hourly averages of fluorometer data from November 4 - 8

In the following **figure 9**, the data of the variance over an hour for each fluorometer is shown. The large variance shown during the first day for the right fluorometer corresponds to an unusually large signal in the comparison, suggesting that the data during that time period was in the presence of an unrecorded variable. The large variance when compared to the size of the signal generated also suggests that the variance seen in this sample is due to the photon collection rather than instrument error, because it varies with the size of the signal. This suggests that the cause of the large initial spike was from a variable such as algae from farther down the flume breaking off and impeding the view of the fluorometer. The floating algae would fluoresce the same as the algae on the substrate and it was floating in the water it would be closer to the instrument and cause this large appearance of growth. Additionally, since the large anomaly is present only for a few hours it suggests that the algae passed through the flume.

Fluorometer Comparison, Variance

Figure 9 Comparison of recorded hourly average variance of fluorometer data from November 8 - 22

In **figure 10**, the fractional variance of the signal is represented, with it being the standard deviation divided by the average signal for that hour. This shows how the variance is related to the signal with the variance mostly within 5 percent of the signal. This suggests that the using the average of the signals collected each hour is valid, and this is verified by similar results in later deployments.

Fluorometer Comparison, Fractional Variance

Figure 10 Comparison of recorded hourly average fractional variance of fluorometer data from November 8 - 22

The next experiment was an initial extended deployment of the fluorometer, which was done on November 8 - 22. The deployment retained the setup from the previous comparison experiment, but with only the left fluorometer used due to complications with the right fluorometer. During this deployment, the structure of the signal showed definite signs of cyclical behavior. This structure is shown in the following **figure 11** with the dark counts removed and follows a 24 cycle, with both the maximum and minimum represented between 11 AM and 2 PM. A strong explanation to this can come from photo-inhibition of the chlorophyll. Photo-

inhibition is occurs when chlorophyll is oversaturated by a light source, in this case the sun, and any attempts to further excite the chlorophyll results in a lower than expected reading. This explains why there in a minimum in the signal when compared to readings taken at midnight, when there is no sun. Another sign to confirm this photo-inhibition is a decrease in the variance of the signal, which is discussed in the next section.

Fluorometer Data, Nov 8-22

Figure 11 Recorded hourly averages of fluorometer data from November 8 - 22

The following figures show the variance and fractional variance of the data with the dark counts removed. The variance in **figure 12** shows the hourly variance of the data for this deployment, and shows similar structure to the comparison experiment. Initially the variance appears differ greatly throughout each day, but that is due to the large signal differences due to the cyclic nature of the chlorophyll. This is confirmed through **figure 13**, which takes into account the relationship of the variance to the signal it is from, and shows that most of the data has a variance of less than 5 percent of the signal. Additionally, the variance confirms the

previous theory that photo-inhibition occurs due to the low variance during periods of highest sun activity, around noon. This is shown again in figure 14 with the average variance per hour.

Fluorometer Data, Nov 8-22, Variance

Figure 12 Recorded hourly average variance of fluorometer data from November 8 - 22

Fluorometer Data, Nov 8-22, Fractional Variance

Figure 13 Recorded hourly average fractional variance of fluorometer data from November 8 - 22

In the following graphs the same data is used as above, with the variances averaged for each hour. By looking at the average variance per hour in **figure 14** the trend of lower variance at high solar activity times is more apparent, shows a drop in the variance, while during the rest of the day the average variance is fairly constant. The drop in the variance during this period gives further evidence of photo-inhibition over saturating the chlorophyll, because as the variance decreases it shows that the chlorophyll's ability to fluoresce is inhibited by giving a more constant reading. The fractional variance shown in **figure 15** shows flattening similar to the fluorometer comparison, but the noon drop is still present despite the removal of the factor of variance related to signal strength.

Figure 14 Recorded variance per hour of fluorometer data from November 8 - 22

Figure 15 Recorded fractional variance per hour of fluorometer data from November 8 - 22

Another aspect that must be investigated of this deployment is if there is a single value in the original signal data that correlates with the average of the day, which would allow a single value to represent the dataset against the harvest yields. The data shows both a large maximum and minimum between 11AM and 2 PM that is most likely caused by photo-inhibition, and this gives reason to not use these extremes due to the large jump between them. In order to compensate for this, taking the recordings at night would give the most consistent signal readings. In **figure 16** the averages for each day are shown in comparison to the hourly averages and the values that are closest to the averages are the values taken at 2 AM. To show this the daily average is compared to just the 2 AM hour averages in **figure 17**. This relationship between the 2 AM and the daily average is also present in the next deployment done in December. This combined with the variance data showing that photo-inhibition occurs mostly at noon, and thus to remove this factor a time would be needed that was opposite this time, which 2 AM fits into.

Nov 8-22, Daily vs Hourly Averages

180 -180 Daily Average 170 170 2 AM Hour Average 160 150 140 130 120 110 110 100 100 9 10 11 12 15 16 17 14 18 19 20 21 22 13 Days (Each Midnight)

Nov 8-22, Daily Average vs 2 AM Average

Figure 17 Comparison of recorded 2 AM vs daily averages of fluorometer data from November 8 - 22

This final aspect of the deployment is shown in **figure 18** and features the 2 AM hourly data with dark counts removed and how it relates to harvested data taken from flume. The data on the harvest was taken from an average of all of the screens that were related to the screen that the fluorometer was directed towards. The first two points would be expected to match with the fluorometer signal due to both of them starting with a fresh experiment and harvest. The third point of harvest though is one of continuous growth throughout the entire period, while the screen that the fluorometer was harvested and cleaned when the second point was taken. This data is still useful because the relative growth rates between the days of 18 to 22 and the relative change in the signal during that same period are similar, with the rates being slower than the rest of the deployment. Additionally, after the second harvest when the screen the fluorometer was observing was harvested clean, the fluorometer signal drops accordingly. This drop in the fluorescence of the algae rather than the fluorescence of the substrate or the reflection of the original LED beam.

2 AM Hourly Average vs Algae Harvest Data, Nov 8-22

Figure 18 Comparison of recorded 2 AM of fluorometer data against harvest data from November 8 - 22

The next focus of the experiment was to run another extended trial of the fluorometers in the same environment of the York River platform. The deployment was from December 1 - 13 and featured the same setup as the first, with the fluorometer set at 45 degrees to the substrate with the angle perpendicular to the beam plane. In this deployment the following data was recorded, which shows similar structure to the first deployment with noon having the extremes of the hourly data. In the following **figure 19** the hourly averages are again shown with error bars of the standard deviation of the hour and the dark counts removed.

Fluorometer Data, Dec 1-13

In the next two graphs the hourly variance and fractional variance is featured from this data without the dark counts. In **figure 20** it shows that the hourly variance decreases during the times of largest solar activity, which suggests again that photo-inhibition is occurring. Due to unknown causes the averages in this deployment have more outliers, though the variance largely does not show anomalies. The lack of anomalies suggests that the outliers are due to the substrate or setup moving, and not due to an instrument error, because the variance is similar to

the other samples and is only increased by the relationship between variance and signal strength.

These aspects are also present in the fractional variance along with how a large proportion of the

variances are within 4 percent of the signal average.

Fluorometer Data, Dec 1-13, Variance

Figure 20 Recorded hourly average variance of fluorometer data for December 1 - 13

Fluorometer Data, Dec 1-13, Fractional Variance

Figure 21 Recorded hourly average fractional variance of fluorometer data from December 1 - 13 Another display of the data confirming the photo-inhibition comes from the following figures of the variance and fractional variance per hour in **figure 22** and **figure 23**. The both of these datasets show at noon the variance decreases where the other hours have fairly constant values. The variance is not as clean as the November deployment, but that can possibly be explained due the flume being towed into the boatyard during the first days of the deployment, and the additional disturbances that the flume would experience due to the closer proximity to the shore and other working vessels. An interesting aspect is how despite this, the signals recorded and the variances of the data don't differ greatly from the previous undisturbed deployment. This suggests that so long as the substrate and fluorometer are in a fixed position to each other, the other factors occurring on the flume may be less important than previously believed.

Figure 22 Recorded variance per hour of fluorometer data from December 1 - 13

Figure 23 Recorded fractional variance per hour of fluorometer data from December 1 - 13

Next, there was to find a time of the day that would be able to represent in the future, what the average of the day would be closest to. When the daily average was placed on the same plot as all of the hourly averages in **figure 24** and **figure 25** with the dark counts removed, the 2 AM value as previously found was again a best fit. Again both the maximum and minimum are present in the data within an hour of each other and thus it seems best to use the time of 2 AM to represent the most consistent value to represent the day. The 2 AM time period doesn't fit the daily average quite as well as in the previous deployment, but the uncertainties of both of the values remain within each other. The time that the two averages differ the most is directly after the full harvest on the 6th, but the difference is resolved after that.

Ś

Dec 1-13, Daily vs Hourly Averages

Figure 24 Comparison of recorded hourly vs daily averages of fluorometer data from December 1 - 13

Dec 1-13, Daily Average vs 2 AM Average

6 7 8 9 Days (Each Midnight)

The final aspect of this deployment was to again compare the 2 AM hourly average found to be able to represent a cleaner form of the deployment data to the harvest data taken of each substrate that represented the screen the fluorometer was directed towards. In figure 26 the comparison between the 2 AM without dark counts and harvest data is shown. Unfortunately the harvest data available during this time period was of growth that was undisturbed growth for longer than the substrate that the fluorometer was directed towards was able to grow. The relative growth is still comparable, but not as relevant as during the November deployment for direct comparison of growth rates. Also this deployment featured a point of December 6th when the screen the fluorometer was directed towards was scraped clean to take the substrate back to an initial state. This shows how the signal decreases immediately during that time similar to the previous deployment, confirming how the fluorometer was observing fluorescence of algae. Another interesting aspect of this is if the assumption that the fluorometer was observing the algal growth, then the growth increased rapidly after the clean harvest, suggesting that the harvest stimulated more growth of algae that fluoresced than there was previously on the substrate.

2 AM Hourly Average vs Algae Harvest Data, Dec 1-13

Figure 26 Comparison of recorded 2 AM of fluorometer data against harvest data from December 1 - 13

Conclusions

During this project I was posed with the objective to characterize the WetLabs FLNTUSB fluorometer and to determine if it was possible to measure the fluorescence to plot the growth of wild algae. I determined that there are two setups possible when deploying the fluorometer, either having the angle of deployment in or perpendicular to the beam plane created by the LED and Detector absorption cones. If the angle is within the beam plane then the largest maximum and most stable angle will be around 45 degrees towards the LED beam side. If the angle is perpendicular to the beam plane the angle sensitivity is decreased from the previous setup, and the angle is able to handle whatever angle the physical constraints are, though an angle of more than 45 degrees is not recommended.

The next aspect was to deploy the fluorometers for extended periods, and through doing so I determined that the fluorometers are useful to measure relative changes in signal, that can be correlated to fluorescence of the algae. They are not able to be compared directly to each other due to the high sensitivity to the instruments based on distance and angle, though once installed in a fixed position the sensitivity of the fluorometer seems to vary greatly when other variables are changed in the experiment. The fluorescence of the chlorophyll is dependent on the photoinhibition effect, though if the daily measurements are taken around 2 AM the values recorded are very close to representing the daily average without experiencing the period photo-inhibition. Finally, there is evidence that the fluorescence observed by the fluorometers can be correlated to the algae density of the substrate that it is directed towards.

	In Beam Plane With Point Source													
3	8 cm	4	4 cm			cm		6	i cm	-	7	' cm		
	Signal		Signal			Signal			Signal			Signal		
Angle	(Counts)	Angle	(Counts)		Angle	(Counts)		Angle	(Counts)		Angle	(Counts)		
130	2128	140	934		140	838		140	222		140	310		
130	2099	140	962		140	831		140	205		140	314		
130	1915	140	965		140	825		140	209		140	318		
130	2035	140	959		140	835		140	213	-	140	320		
130	1970	140	954		140	839		140	232		140	321		
130	1935	140	965		140	851		140	273		140	315		
130	1975	140	965		130	912		130	284		130	259		
130	1963	130	1206		130	930		130	289		130	234		
130	1965	130	1222		130	943		130	319		130	251		
120	1982	130	1221		130	950		130	332		130	275		
120	2002	130	1235		130	945		130	331		130	277		
120	2113	130	1243		130	951		130	329		130	278		
120	2244	120	1176		120	861		120	402		120	250		
120	2192	120	1177		120	828		120	412		120	245		
120	2114	120	1250		120	848		120	413		120	246		
120	1945	120	1305		120	860		120	347		120	243		
110	2427	120	1317		120	868		120	372		120	252		
110	2470	110	1221		120	876		120	362		120	251		
110	2455	110	1229		110	718		110	288		110	236		
110	2451	110	1237		110	657		110	320		110	222		
110	2457	110	1232		110	655		110	340		110	220		
110	2456	110	1238		110	687		110	333		110	220		
110	2410	100	1041		110	692		110	332		110	220		
100	2353	100	1052		110	696		110	300		110	219		
100	2348	100	1054		100	643		100	275		100	205		
100	2355	100	1052		100	589		100	287		100	189		
100	2367	100	1067		100	587		100	298		100	185		
100	2366	90	967		100	584		100	299		100	187		
100	2320	90	962		100	586		100	298		100	186		
100	2177	90	1016		100	583		100	284	-	100	185		
90	2149	90	1019		90	547		90	274		90	160		
90	1999	90	1016		90	506		90	269		90	139		
90	1928	80	865		90	490		90	266		90	128		
90	1910	80	895		90	488		90	262		90	124		
90	1879	80	899		90	489		90	262		90	123		

Data Tables, Lab Experiment - Angle Sensitivity

90	1867	80	898	90	490	90	230	90	127
90	1857	80	902	80	400	80	205	80	123
90	1829	70	815	80	370	80	208	80	112
80	1602	70	815	80	396	80	207	80	112
80	1663	70	815	80	397	80	208	80	113
80	1832	70	813	80	396	80	209	80	115
80	1833	70	812	80	397	80	202	80	120
80	1829	60	688	70	352	70	178	70	110
80	1821	60	681	70	311	70	177	70	100
70	1594	60	681	70	312	70	175	70	107
70	1511	60	679	70	315	70	174	70	107
70	1705	60	676	70	314	70	173	70	107
70	1706	50	507	70	313	70	162	70	107
70	1697	50	490	60	265	60	145	60	92
70	1713	50	488	60	235	60	144	60	88
70	1530	50	477	60	234	60	143	60	89
60	1347	50	468	60	231	60	141	60	90
60	1484	40	325	60	227	60	140	60	89
60	1495	40	332	60	225	60	124	60	89
60	1483	40	341	50	187	50	108	50	83
60	1447	40	340	50	164	50	108	50	77
60	1255	40	337	50	165	50	106	50	77
50	530	40	213	50	166	50	105	50	77
50	796			50	165	50	103	50	76
50	899			50	166	50	87	50	75
50	832			40	142	40	70	40	65
50	845			40	115	40	75	40	69
50	870			40	124	40	76	40	69
50	931			40	129	40	75	40	69
				40	129	40	75	40	68
				40	130	40	72	40	69

Perpendicular to Beam Plane With Point Source													
	3 cm	4	4 cm			cm		6	5 cm	7	7 cm		
	Signal		Signal			Signal			Signal		Signal		
Angle	(Counts)	Angle	(Counts)		Angle	(Counts)		Angle	(Counts)	Angle	(Counts)		
120	2225	130	913		130	486		140	182	140	112		
120	2231	130	933		130	489		140	180	140	111		
120	2242	130	935		130	488		140	183	140	111		
120	2245	130	952		130	477		140	185	140	113		
120	2252	130	963		130	476		140	187	140	126		
120	2265	130	1060		130	483		140	218	140	129		
110	2320	120	1119		120	487		130	264	130	146		
110	2334	120	1120		120	485		130	256	130	145		
110	2337	120	1125		120	485		130	246	130	145		
110	2339	120	1143		120	483		130	249	130	145		
110	2352	120	1152		120	484		130	250	130	145		
110	2364	120	1168		120	481		130	254	130	146		
100	2392	110	1178		110	482		120	281	120	157		
100	2394	110	1182		110	479		120	286	120	158		
100	2390	110	1174		110	476		120	288	120	157		
100	2387	110	1174		110	477		120	288	120	157		
100	2389	110	1177		110	470		120	288	120	158		
100	2399	110	1166		110	473		120	290	120	159		
90	2406	100	1145		100	475		110	295	110	161		
90	2407	100	1144		100	469		110	295	110	162		
90	2407	100	1138		100	467		110	294	110	162		
90	2407	100	1135		100	467		110	292	110	160		
90	2408	100	1136		100	467		110	285	110	160		
90	2388	100	1127		100	467		110	282	110	160		
80	2321	90	1081		90	443		100	233	100	157		
80	2317	90	1052		90	440		100	221	100	156		
80	2321	90	1102		90	441		100	245	100	154		
80	2319	90	1173		90	441		100	243	100	153		
80	2320	90	1173		90	442		100	245	100	153		
80	2300	90	1162		90	441		100	245	100	155		
70	2187	80	1010		80	393		90	253	90	159		
70	2206	80	1007		80	395		90	256	90	158		
70	2214	80	1037		80	395		90	261	90	157		
70	2225	80	1070		80	397		90	261	90	157		
70	2224	80	1075		80	398		90	260	90	158		
70	2195	80	1076		80	396		90	258	90	156		
60	2065	70	1033		70	348		80	239	80	151		

60	2093	70	1022	70	354	80	235	80	150
60	2086	70	1021	70	362	80	234	80	150
60	2066	70	1031	70	362	80	230	80	149
60	2040	70	1035	70	362	80	227	80	149
60	1859	70	1025	70	357	80	227	80	148
50	1648	60	903	60	259	70	210	70	135
50	1676	60	917	60	283	70	205	70	134
50	1733	60	946	60	285	70	204	70	134
50	1805	60	950	60	282	70	203	70	134
50	1732	60	922	60	281	70	202	70	135
		60	907	60	257	70	200	70	133
		50	723	50	202	60	180	60	125
		50	719	50	198	60	183	60	126
		50	729	50	210	60	185	60	124
		50	753	50	214	60	186	60	125
		50	754	50	216	60	186	60	123
		50	748	50	219	60	186	60	122
						50	166	50	111
						50	163	50	110
						50	164	50	110
						50	165	50	109
						50	166	50	109
						50	164	50	108
						40	140	40	91
						40	137	40	89
						40	137	40	89
						40	137	40	89
						40	138	40	89
						40	138	40	89

In Beam Plane With Infinite Plane Source													
(1)	3 cm	4	4 cm			cm		6	5 cm	7	7 cm		
	Signal		Signal			Signal			Signal		Signal		
Angle	(Counts)	Angle	(Counts)		Angle	(Counts)		Angle	(Counts)	Angle	(Counts)		
130	2317	140	1254		150	701		150	474	150	370		
130	2318	140	1249		150	779		150	480	150	381		
130	2302	140	1177		150	786		150	480	150	380		
130	2292	140	1215		150	780		150	478	150	382		
130	2286	140	1221		150	783		150	466	150	379		
130	2292	140	1229		150	780		150	481	150	361		
120	2383	130	1279		140	795		140	488	140	361		
120	2454	130	1290		140	796		140	492	140	368		
120	2458	130	1285		140	798		140	494	140	376		
120	2458	130	1309		140	807		140	500	140	361		
120	2467	130	1317		140	792		140	477	140	365		
120	2462	130	1319		140	794		140	469	140	362		
110	2469	120	1321		130	800		130	471	130	350		
110	2491	120	1338		130	814		130	469	130	351		
110	2492	120	1333		130	822		130	470	130	353		
110	2501	120	1322		130	818		130	472	130	359		
110	2500	120	1343		130	822		130	434	130	362		
110	2510	120	1327		130	807		130	438	130	356		
100	2498	110	1287		120	817		120	445	120	322		
100	2495	110	1286		120	813		120	446	120	325		
100	2499	110	1293		120	811		120	445	120	327		
100	2502	110	1291		120	816		120	448	120	327		
100	2502	110	1286		120	820		120	424	120	328		
100	2502	110	1268		120	793		120	419	120	328		
90	2488	100	1232		110	786		110	423	110	305		
90	2472	100	1235		110	771		110	426	110	305		
90	2464	100	1235		110	762		110	427	110	305		
90	2465	100	1230		110	765		110	428	110	306		
90	2464	100	1230		110	766		110	408	110	306		
90	2461	100	1199		110	731		110	396	110	307		
80	2432	90	1163		100	709		100	397	100	292		
80	2380	90	1164		100	711		100	397	100	287		
80	2377	90	1163		100	712		100	397	100	280		
80	2377	90	1162		100	713		100	397	100	283		
80	2377	90	1160		100	713		100	398	100	283		
80	2377	90	1122		100	679		100	372	100	276		
70	2410	80	1104		90	657		90	363	90	256		

70	2428	80	1104	90	639	90	365	90	255
70	2421	80	1103	90	633	90	364	90	254
70	2418	80	1103	90	639	90	364	90	255
70	2417	80	1102	90	639	90	363	90	255
70	2417	70	1102	90	639	90	348	90	250
70	2507	70	1106	80	607	80	343	80	227
60	2542	70	1116	80	596	80	344	80	228
60	2434	70	1095	80	596	80	345	80	230
60	2429	70	1097	80	594	80	346	80	231
60	2439	70	1097	80	595	80	345	80	230
60	2446	60	1106	80	599	80	346	80	229
60	2554	60	1115	70	577	70	340	70	214
50	2615	60	1117	70	577	70	338	70	213
50	2594	60	1115	70	577	70	338	70	213
50	2589	60	1116	70	578	70	339	70	212
50	2587	60	1084	70	580	70	340	70	212
50	2583	50	957	70	578	70	344	70	210
		50	785	60	570	60	345	60	194
		50	751	60	568	60	352	60	187
		50	688	60	560	60	355	60	186
		50	754	60	560	60	356	60	184
		50	780	60	561	60	355	60	184
		40	669	60	562	60	353	60	183
		40	577	50	554	50	335	50	160
		40	610	50	530	50	331	50	163
		40	644	50	532	50	316	50	162
		40	642	50	522	50	318	50	162
		40	642	50	521	50	322	50	162
				50	524	50	361	50	160
				40	499	40	376	40	125
				40	491	40	365	40	129
				40	478	40	319	40	132
				40	477	40	332	40	132
				40	478	40	338	40	133
				40	482	40	326	40	133
				30	421	30	251	30	101
				30	377	30	229	30	102
				30	370	30	225	30	102
				30	367	30	225	30	103
				30	361	30	224	30	104

	Perpendicular to Beam Plane With Infinite Plane Source												
~~~	3 cm	4	4 cm		5 cm			6	i cm	7	7 cm		
	Signal		Signal			Signal			Signal		Signal		
Angle	(Counts)	Angle	(Counts)		Angle	(Counts)		Angle	(Counts)	Angle	(Counts)		
120	2105	130	1155		130	627		130	425	130	268		
120	2104	130	1153		130	624		130	423	130	269		
120	2107	130	1160		130	595		130	420	130	270		
120	2106	130	1155		130	602		130	422	130	271		
120	2109	130	1153		130	609		130	422	130	271		
120	2111	130	1153		130	611		130	423	130	272		
110	2125	120	1183		120	617		120	408	130	273		
110	2134	120	1189		120	618		120	410	130	273		
110	2142	120	1187		120	618		120	409	120	268		
110	2147	120	1189		120	617		120	409	120	268		
110	2148	120	1187		120	618		120	409	120	268		
110	2152	120	1187		120	618		120	407	120	267		
100	2182	110	1197		110	617		110	393	120	268		
100	2189	110	1198		110	616		110	392	120	268		
100	2194	110	1199		110	617		110	393	120	268		
100	2195	110	1194		110	618		110	393	120	266		
100	2198	110	1194		110	618		110	393	110	261		
100	2201	110	1200		110	617		110	392	110	261		
90	2244	100	1198		100	613		100	380	110	261		
90	2254	100	1200		100	610		100	380	110	261		
90	2259	100	1200		100	612		100	380	110	261		
90	2260	100	1199		100	612		100	378	110	261		
90	2261	100	1199		100	613		100	378	110	261		
90	2260	100	1200		100	612		100	377	110	260		
80	2255	90	1196		90	607		90	366	100	254		
80	2260	90	1196		90	607		90	367	100	253		
80	2258	90	1195		90	607		90	367	100	253		
80	2261	90	1194		90	607		90	368	100	252		
80	2262	90	1194		90	607		90	368	100	253		
80	2262	90	1193		90	607		90	368	100	253		
70	2305	80	1186		80	613		80	360	100	253		
70	2332	80	1185		80	611		80	359	100	252		
70	2331	80	1182		80	608		80	359	90	249		
70	2329	80	1179		80	608		80	360	90	249		
70	2329	80	1178		80	608		80	360	90	249		
70	2329	80	1175		80	609		80	360	90	249		
60	2351	70	1161		70	611		70	357	90	249		

60	2355		70	1160	70	607	70	357		90	249
60	2357		70	1160	70	604	70	357		90	249
60	2356		70	1158	70	604	70	356		90	248
60	2350		70	1156	70	603	70	355		80	244
60	2356		70	1154	70	604	70	355		80	243
50	2368		60	1123	60	596	60	343		80	244
50	2350		60	1126	60	596	60	343		80	244
50	2320		60	1123	60	592	60	343		80	243
50	2320		60	1115	60	593	60	344		80	243
50	2316		60	1109	60	594	60	344		80	243
50	2299		60	1096	60	593	60	344		80	243
			50	1004	50	587	50	342		70	238
			50	999	50	591	50	341		70	238
			50	996	50	590	50	339		70	238
			50	994	50	589	50	338		70	238
			50	996	50	590	50	338		70	238
			50	984	50	589	50	336		70	238
										70	238
										70	236
										60	227
										60	227
									-	60	228
		-							-	60	228
									-	60	227
										60	227
										60	227
		-							-	60	225
		-							-	50	218
		-							-	50	219
										50	219
										50	219
										50	219
										50	220
										50	219
										50	219

## **Bibliography**

Aberle, N. (September 2006). 'Spectral fingerprinting' for specific algal groups on sediments in situ: a new senso. *Stuttgart*, 575-592.

H, U. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Internat. , 1-38.

SCCF Recon. (2010). *Chlorophyll*. Retrieved August 1, 2010, from SCCF Recon - Sanibel-Captiva Conservation Foundation: River, Estuary and Coastal Observing Network: http://recon.sccf.org/definitions/chlorophyll.shtml

Schroeder, W. &. (1994). Pigment patterns in suspended matter from Elbe and associated waters as determined using high performance liquid chromatography. *Neth. J Aquat. Ecol.*, 255-265.

Wetlabs. (May 17, 2010). Characterization Sheet.

Wetlabs. (23 Dec 2009). Combination Fluorometer and Turbidity Sensor.